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Abstract

Performing complex tasks in open environments remains challenging for robots, even when
using large language models (LLMs) as the core planner. Many LLM-based planners are
inefficient due to their large number of parameters and prone to inaccuracies because they
operate in open-loop systems. We think the reason is that only applying LLMs as planners
is insufficient. In this work, we propose DaDu-E, a robust closed-loop planning framework
for embodied AI robots. Specifically, DaDu-E is equipped with a relatively lightweight
LLM, a set of encapsulated robot skill instructions, a robust feedback system, and mem-
ory augmentation. Together, these components enable DaDu-E to (i) actively perceive and
adapt to dynamic environments, (ii) optimize computational costs while maintaining high
performance, and (iii) recover from execution failures using its memory and feedback mecha-
nisms. Extensive experiments on real-world and simulated tasks show that DaDu-E achieves
task success rates comparable to embodied AI robots with larger models as planners like
COME-Robot, while reducing computational requirements by 6.6×. Users are encouraged
to explore our system at: https://rlc-lab.github.io/dadu-e/.
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1 INTRODUCTION

Applying multimodal large language models (LLM) in the planning and decision-making module of the
robotic computing stack is becoming a practical solution to improving robots’ ability to solve long-horizon
tasks. A robot equipped with an LLM as its planner can take flexible instructions directly from users,
decomposing a complex task into sequential trivial steps and finishing them to accomplish a complex task.
Such an approach significantly improves the usability and performance of traditional program-based robots.

While prior works mostly focus on integrating LLM into the computing stack and improving the success rate
of the tasks (Zhi et al., 2024; Liang et al., 2023; Ahn et al., 2022), they usually refer to the planning ability
from the billions of model parameters and countless training data. As a result, these works usually rely on
LLMs incompatible running on local servers and are deployed on cloud data centers. Our work pivots from
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only focusing on performance. Instead of pursuing a higher success rate, we aim to enhance an affordable
LLM that can run on a local server with a domain-specific robot skill set, frequent visual feedback, and
memory augmentation to achieve a similar success rate while largely reducing the computation cost.

We propose an efficient LLM planning module for solving long-horizon tasks. Specifically, after being given
instructions from the users, the planning module will decompose the tasks into a chain of skills that we will
define and program for the robots. After each skill is performed, the planning module will provide one or
multiple visual feedback information. The skill chain can be modified based on the visual feedback. On top
of the multi-modal LLM, we augment the planning module with a memory module that records recently
used objects to save the burden on LLM.

The design principle of our planning module is twofold. First, we limit the scope of our robots. Specifically,
we do not intend to build a general robot planning module capable of doing everything. Instead, we limit
the use of the robot to multiple fixed scenarios. For example, in this paper, we limit the planning module
to work in the domain of grocery stores and warehouses. With fixed functionality, we can design a lean and
efficient skill set for LLMs to use. Second, we enrich the information inputs for the planning module. While
most existing works perform open-loop planning and control, we carefully design visual feedback that can
be used for closed-loop control and improve the planning results. Moreover, we augment the LLM with a
memory unit to store recently used objects and their statuses, which further helps improve efficiency.

We integrate the above-mentioned planner into a robot computing pipeline. The robot has a moving base
and a Universal Robot 03 arm (Universal Robots, 2024). We evaluate the planner in both simulation
environments and real environments. With a much smaller LLM (LLaMA 3.1-8B) used in our planner, we
achieve a similar success rate compared to the existing method using a much larger LLM (GPT-4o (OpenAI,
2024b) or similar (OpenAI, 2024a)). However, in terms of efficiency, our method significantly improves upon
the existing method. We save the computational requirements by 6.6 times. We successfully reduce the
computation load and run our system on a local server. Largely improve the real-time performance.

Our main contributions to this paper can be listed as follows:

• To the best of our knowledge, we are the first work focusing on improving the efficiency of using
LLM as the planning module for robots to finish long-horizon tasks.

• We propose restricting the operational scope of the robots and limiting the skill set accessible to the
planner to mitigate planning complexity.

• We propose to close the planning and control loop, which means constantly providing visual feedback
to the planner; the feedback allows the planner to change its previous planning steps.

• We augment the planner with a memory module, providing instant memorization of the recently used
objects, further reducing the latency of repetitively referencing the same objects in a long-horizon
task.

The rest of this paper is organized as follows. Sec. 2 introduces the related work. Sec. 3 proposes our method.
Sec. 4 demonstrates the effectiveness of our work with experiments in simulation and real scenarios. Sec. 5
concludes this paper.

2 Related Work

Long-horizon Task Planning via multi-modal LLMs. Planning ability decides the upper bound
of how intelligent a robot can be. Traditional rule-based planners can enable robots to solve short and
simple tasks. The emergence of large language models shows the potential for reasoning and complex task



decomposition (Ye et al., 2023; Ho et al., 2022; Shen et al., 2023), and thus, it has soon been applied in
robot planning. At first, researchers try to incorporate LLMs into the planning cycle of robots (Kannan
et al., 2023; Ding et al., 2023). Soon, multi-model LLMs or VLMs take over. Among these efforts, Code-
as-Policies (Liang et al., 2023), PaLM-E (Driess et al., 2023), and robotic transformers (Brohan et al.,
2022; Brohan et al., 2023; Joublin et al., 2024) demonstrate significant improvement on the success rate on
long-horizon tasks. Usually, these VLMs take language instructions such as “clean the table” and visual
observations and generate action sequences for the robots to finish the task.

End-to-end Approach and Modular-based Solutions. Generally, the use of LLM can be classified
into two categories. The first one is the end-to-end approach, which directly outputs robot actions from the
models (Kim et al., 2024; Team et al., 2024; Black et al., 2024). End-to-end approaches must train the model
from scratch or fine-tune a trained model, which requires heavy data. Modular-based solutions tend to wrap
the skills robot’s own into APIs and use models to program based on APIs (Zhi et al., 2024). Such skills
include one module in the robot computing pipeline, such as navigation and perception, or a combination of
multiple modules, such as exploration and grasp.

Close-loop Control. The first batch of research works on leveraging LLMs as the planning module
performs open-loop control, where the robots will execute the set of instructions provided by the planner (Ahn
et al., 2022; Dalal et al., 2024). However, replanning with feedbacks, or close-loop control is one of the key
steps of enabling robots to execute long-horizon tasks (Li et al., 2024b; Bu et al., 2024). COME-Robot (Zhi
et al., 2024) and REPLAN (Skreta et al., 2024) starts to leverage the LLMs they use for planning to digest
visual feedbacks to help replanning. In line with prior works, we show that with appropriate feedbacks, using
small models as the planner can enhance their planning capability and achieve similar success rate compared
to large models.

3 Method

We describe the method we use to enhance an LLM-based planner. Specifically, the enhancement contains a
limited instruction set (Sec. 3.2), frequent visual feedback (Sec. 3.3), and memory augmentation (Sec. 3.4).

3.1 Architecture

We build three main modules in DaDu-E for robust closed-loop planning as Fig 1: instruction sets, planning
feedback, and memory augmentation. These modules address critical gaps in existing robotic systems, often
leading to static and unreliable task execution. Instruction sets provide a structured and machine-readable
representation of task instructions, overcoming the ambiguity inherent in natural language commands. This
structure ensures clarity and minimizes errors during task decomposition and execution for LLM planner.
Robots often fail to interpret complex or context-dependent commands without such a module, leading to
task breakdowns or misinterpretations. LLM first gets instructions from the user and then breaks them
down into sub-tasks for these instruction sets to action. Each instruction is blessed with its dependent
running function for better performance. Planning feedback introduces a robust mechanism for real-time
adaptability by enabling the system to dynamically replan actions in response to environmental changes
or planning failures. This capability is essential because static planning approaches are brittle and often
incapable of handling unexpected changes in dynamic environments, such as the absence of a required object
or a blocked path. This feature is crucial for operating in dynamic, unpredictable environments. Finally,
memory augmentation enhances the robot’s ability to reuse prior knowledge, thereby reducing latency and
improving task reliability, which is especially helpful in environment-changing circumstances. Traditional
systems that rely exclusively on real-time data lack the capacity to store and recall past interactions, leading
to inefficient re-planning and redundancy in decision-making processes.



{"reasoning": "Toy shark is not on the toy table, so I 
will look in the cabinet. 
The optimal path is to first go to the cabinet, find the 
toy shark ......
"action_list": [
"go_to[cabinet][1.61 3.89]",
......
],
"first_action": "go_to[cabinet][1.61 3.89]"}

{"reasoning": "The task involves moving to the toy table to 
pick up an toy shark and then move to the user’s bed.
The optimal path is to first go to the toy table, pick up 
the toy shark, and then move to user’s bed.",
"action_list": [
"go_to[toy table][0.61 5.89]",
"pick_up[toy shark]",
"go_to[bed][1.67 0.09]",
"done"
],
"first_action": "go_to[toy table][0.61 5.89]"}

Take a toy shark to 
my bed.

Yes, madam.

Task planning

Action planning

Planning
feedback

      Memory Expand 
memory

LLaMA 3.1 8B

& Related Memory & Visual Description   &  Planning Feedback 

VLM
Replan Replan .JSON for API

Replan 

Environment Perception

2D Semantic Map Structured Text Prompt

—MAP—

[fruit table 1.61, 4.51]

[shipping shelf 7.61, 2.51] 

[toy rack -8.91, 3.51]

[drink table -9.10, -8.22]

......

—MAP—

Action: Pick
Parameters: 
      object      
      string 

High-Level Tasking Plannig Low-Level Action Plannig(Action API)

Sub-task

Action: Place
Parameters: 
      null

Action: Navigate 
Parameters: 
      location 
      double x,  y

Fig. 1: Architecture of DaDu-E.

3.2 Instruction Sets

Instructions are bridges between planners and robots. Detailed and pre-programmed instructions provide
encapsulation of the abilities of the robots, just as the instruction set architecture (ISA) like ARM (ARM
Limited, 2013) and X86 (Intel Corporation, 2021) provide encapsulation of the underlying hardware to the
programmers. Thus, the LLM-based planner can only focus on high-level planning, guiding robots to finish
long, complex tasks.

The trend of designing low-level instruction sets is to provide as rich instructions as possible. The design
principle is to provide a huge sampling space for the LLM to pick the best chain of actions. For example,
Robotic Transformer (RT-1) (Brohan et al., 2022) provides nine skills for the planner, and COME-Robot
provides six (Zhi et al., 2024). We find that among the six skills provided in COME-Robot, some of them
overlap. For example, the skill explore local and explore global can be replaced by the skill navigation
and a map of the environment.

Although rich instructions can enhance the planner’s search space, it also burdens the model. First, currently,
the instructions are usually fed into LLMs in different forms of prompts; larger instruction sets indicate
longer context, which are generally more challenging for affordable LLMs such as LLaMa with 7 billion
parameters (Touvron et al., 2023). Second, not all the skills in larger instruction sets are frequently used.
Some may even lead to longer execution time and worse planning results. Specifically, in our evaluation, we
find the skill explore can lead to lower success path length (SPL)(Anderson et al., 2018).

We aim to provide leaning skill sets tailored for the working environment and applications. For example, in
a warehouse environment where the robots perform tasks such as organizing objects and picking objects for
users, the instruction sets should be simple and contain only three skills. The navigate instruction guides
the robot to the vicinity of the specified shelf and positions it facing the center of the shelf. As we provide a
detailed semantic map for the planner, the navigate instruction can thus transform semantic information to
geometric information. The grasp instruction, utilizing sensor and semantic information, directs the robot
to grasp a specific object. In contrast, the instruction in the place controls the robot to place the object
on a table in front of it. Necessary parameters and return values for each instruction are shown in detail in



Table 1.

With the reduced size of instruction sets, we significantly reduce the context length. The average length of
our prompts feed into the planner is only 543 tokens, significantly shorter than existing works. The planner
will generate a segment of a JSON file that lists the actions to be taken to perform the long and complex
task. Notice that the JSON file is not unchangeable; as we will provide frequent feedback, the action list
may vary along the execution of the task.

Table 1: Function Descriptions.

Function Parameters Return Value

navigate location | double x, double y result, observation |
Boolean, Image

pick name of target object | string grasping result | Boolean
place null place result | Boolean

3.3 Planning Feedback

Planning feedback is another key contribution we propose. Most LLM-based planners are open-loop control,
where robots only execute the instructions generated by the planner and do not provide feedback. COME-
Robot is one of the first several works introducing feedback mechanism into the planner. It provides instant
feedback on whether the task succeeds and related images as feedback to the system.

We go one step further by having the planner evaluate the previous instruction and use the results as feedback
for further planning. For example, once the navigate instruction finishes and the next instruction is grasp,
the planner will evaluate whether the robot is at the optimal position for grasp instruction. Specifically,
we feed the results of the previous instructions, the current status of the robot, the image captured at the
current position, and the results of parsing the image using a Vision Language Model (VLM), such as the
objects in the image and the geometric relationship. Meanwhile, we send the current state back to the LLM
planner in order to get the next loop action.

With detailed feedback, the planner will be required to evaluate the previous instructions based on the
feedback, consider whether to finish the next instruction and make further plans. Specifically, we ask the
planner to do two things. If the planner decides the previous instruction was not properly executed, it can
reasonably alter the future plan. Otherwise, the original plan is followed. For example, upon reaching the
current table, if the table does not contain the designated grasping target, the LLM planner will instruct
the robot to navigate to the next potential table and repeat this process until all plausible tables have been
explored.

The occasions of re-planning do happen, even when the previous instruction finishes successfully. For ex-
ample, when the planner issues a navigate instruction followed by a grasp instruction, the first navigation
usually stays in a coarse granularity. After the robot finishes the navigate instruction, it usually locates
itself at a position near the object to pick. However, the grasp instruction may not be successfully executed
due to the geometric distance between the robot and the object (i.e., a large table with an irregular shape).
Under such circumstances, the planner should and will change the rest of the plan, specifically by changing
the next instruction from grasp into navigate to a position closer to the object.

The robot must navigate to the optimal table side for grasping. For instance, if the target ”apple” is on the
front side and the robot is on the back, the distance exceeds the arm’s working range. To address this, we
capture the current table image upon reaching the navigation goal and send it to the VLM planner based on
LLaVA-OneVision-8B(Li et al., 2024a), which identifies the correct table side as the final navigation goal.



3.4 Memory Augmentation

Our robot system’s memory module denoted M , consists of two main components: short-term memory MS

and long-term memory ML. Long-term memory maintains a semantic map of the environment, functioning
similarly to semantic memory in the human brain. Short-term memory, by contrast, focuses on frequently
changing information, such as the states and the positions of objects, resembling episodic memory in the
brain.

Short-term memory The short-term memory MS is represented as follows:

MS = {MS1 ,MS2 , ...,MSN
} (1)

where each MSi(1 ≤ i ≤ N) is a short-term memory unit, and N denotes the total number of units.

The short-term memory module is organized as structured textual information, including object categories,
locations, and image summaries. Each memory unit is assigned a unique ID to track object recurrence. When
an object reappears, a new unit replaces the previous one. A single short-term memory unit is represented
as:

MSi = {ID,OBJECT, POSITION, IMG} (2)

where OBJECT refers to the object category, POSITION denotes the object’s location, and IMG repre-
sents a summary generated by the vision-language model (VLM) based on the object’s image input.

When the robot needs to recall short-term memory, it uses semantic similarity to find the most relevant
memory unit. Each MSi

is embedded as a vector set, and cosine similarity is calculated between the current
Instructions I’s vector and stored memory vectors, retrieving the most similar unit MS∗ :

M∗
Si

= argmax
i

(
SimCOS

(
f(I), {f(MSi

)}Ni=1

))
(3)

where M∗
Si

is the memory unit most similar to the current instruction I, f(·) is a normal text embedding
model, SimCOS(A,B) denotes the cosine similarity between A and B.

Based on the retrieved memory unit, the planner can dynamically adjust the parameters of action functions
in the JSON file. For example, if at time t0, the robot completes the task “place all yellow fruits on the
storage rack,” the planner may not accurately retain all prior task details. Later, at time t3, when given the
instruction “find a yellow fruit and place it on the dining table,” the planner might generate an incorrect
action list based on outdated information, mistakenly assuming the yellow fruits are still on the table.

Long-term memory Long-term memory stores persistent information about the scene, such as obstacle
distribution, fixed object locations, and scene layout. During task execution, it primarily assists with global
path planning and provides a deeper scene understanding when required. This module is structured in two
layers: a grid map at the lower level, which represents obstacles in the scene and is used for basic navigation
and path planning, and an upper layer with semantic text labels corresponding to grid coordinates. These
labels are used as prompts for the large language model (LLM), aiding the robot in understanding its
environment.

4 Evaluation

4.1 Evaluation Environment set-up

We conducted an evaluation of DaDu-E in both a real-world environment and a 1:1 simulation environment.

The real-world experimental environment was carefully designed to simulate a variety of scenarios that align
with the defined task levels, as summarized in Table 3. The setup consists of multiple marked locations, each



serving distinct functions in embodied intelligence testing. These include a Storage Rack, a Fruit Table, a
Drinks Table, a Toys Table, and a User Entry Point. Each location was chosen to evaluate specific robotic
skills such as object recognition, grasping, classification, dexterity, and user interaction.

For the real-world environment, the robotic hardware utilized consists of a Dalu mobile base (Robot, 2024)
and a UR3 robotic arm (Universal Robots, 2024). Both setups were equipped with basic hardware com-
ponents, including two-finger Robotiq grippers(Robotiq, 2024), Intel d435 depth cameras(RealSense, 2024),
and RPLIDAR A2 LiDAR sensors(Slamtec, 2024), to ensure the robots could perform mobile manipulation
tasks effectively. We build the sim and real environment on Ubuntu 20.04 and ROS noetic. We set the
depth camera on the gripper for a better grasping view. The construction of our robot is in Fig 2, and
robot hardware information details can reference Table 2. Our experiments were conducted using a mobile
manipulator robot. All the model inference tasks are based on a single NVIDIA 3090 GPU with 24G GPU
memory(Corporation, 2020).

Fig. 2: Overview of our real robot.

The diverse setup provided a comprehensive testing ground for the robot’s capabilities across all task levels,
ensuring scalability and adaptability in real-world scenarios.3.

Table 2: Robot hardware configuration.

Hardware Setting

DoFs of Robot Arm 6
DoFs of Gripper 1
Wheels of Base 6
Depth Camera 1

LiDAR 1
Camera Resolution 640*480

For the simulation environment, we utilize a Gazebo simulator based on our real-world environment because
of its exceptional generalizability. This allows for seamless communication between simulated components



Table 3: Functions of Marked Locations in Embodied AI Environment Testing.

Location Function in Embodied Intelligence Testing

Storage Rack Placing items that need to be sorted or classified, simulating
the robot’s ability to organize and classify items in different
tasks.

Fruit Table Placing fruits, testing the robot’s ability to recognize, grasp,
and transport light objects like fruits.

Drinks Table Placing drinks, testing the robot’s ability to recognize,
grasp, and transport heavier objects like drink bottles.

Toys Table Placing toys, testing the robot’s dexterity and accuracy in
handling small or irregularly shaped objects.

User Entry Point Simulating the starting or ending point of user-robot in-
teraction, such as initiating tasks or reporting after task
completion.

and real-world robots.

4.2 Baseline methods

To evaluate task-finishing ability, we adopt Code as Policies (CaP) (Liang et al., 2023), a state-of-the-
art approach that demonstrates strong performance in task execution. The CaP method utilizes LLM to
generate code that directs robots to execute complex tasks. This approach shares similarities with our
method, which involves the design of code APIs, task decomposition, and the establishment of a memory
mechanism. Thus, the CaP method can serve as a compelling baseline to evaluate the reliability of our
approach. Meanwhile, as the first state-of-the-art robotic closed-loop computing pipeline, COME-robot(Zhi
et al., 2024) provides a long-horizon and robust task-finishing ability. However, due to the unavailability
of the open-source implementation of COME-Robot, we reconstruct COME-Robot locally with the same
planning method with our designed APIs to build a strong pipeline for evaluation, referred to as COME-
Robot*. Similarly, for CaP works as on table-on tasks instead of mobile manipulate works, we take CaP
as CaP* with the same eval method in (Zhi et al., 2024) and take GPT-3.5 as its planner.

To assess computational cost, we utilize RT-2 (Brohan et al., 2023) ,PaLM-E(Driess et al., 2023) and
RoboFlamingo (Li et al., 2023) as benchmark models. These state-of-the-art end-to-end embodied AI frame-
works are notable for their advanced capabilities in high-level task comprehension and planning. By con-
ducting a comparative analysis against these baselines, we aim to demonstrate the computational efficiency
and performance trade-offs of our proposed approach within the domain of embodied intelligence.

4.3 Embodied AI task categorization

We generally design four levels of tasks to systematically evaluate the robot’s capabilities at increasing
levels of complexity, aiming to demonstrate the progression from basic functionalities to advanced decision-
making. This categorization provides a structured framework for analysis, enabling clear insights into the
robot’s strengths and areas for improvement while highlighting the benefits of a gradual increase in task
difficulty for performance benchmarking. The appendix provides detailed task design.

Level 1: Basic Task Execution Level At this level, robots are tasked with performing fundamental
sub-tasks such as grasping and placing various objects. The primary objective of this level is to validate the
robot’s success rate in different object manipulation and navigation tasks. Tasks typically involve specific
object operations, such as grasping a strawberry and placing it on a toy table or picking up a squirrel
toy and delivering it to a shipping table. These tasks emphasize the robot’s basic operational capabilities



and elementary environmental adaptability, laying the groundwork for more advanced tasks. We design 10
different tasks of level 1; four of the example instructions from users are as Table 4.

Table 4: Example Instructions For Task Level 1.

Instruction

Grasp a strawberry and put it on toy table.
Find delicious fenta can and place on shipping table.

Move to the fruit table.
Pick up a strawberry and put it on shipping table.

Level 2: Multi Tasks Execution Level The Advanced Task Execution level involves multi-step and
composite operations, requiring robots to possess enhanced task processing and environmental adaptation
capabilities. Tasks at this level typically encompass multiple operations, such as identifying target objects,
grasping, moving, and placing them in specified locations. The complexity and diversity of task steps are
key characteristics of this level. For example, a robot may need to avoid obstacles or adjust its operational
strategy while performing a grasping task in response to environmental changes. This level evaluates the
robot’s performance in more complex and dynamic environments. We design 7 different tasks for level 2,
four of the example instructions from users are as follows:

Task 1

Grasp a Pepsi can and place it on the fruit table. Pick up a squirrel toy and place it on the shipping
table. Pick a Sprite can and put it on the fruit table.

Task 2

Find a plum and place it on the shipping table. Move a strawberry to the toy table. Set the squirrel
toy on the fruit table.

Task 3

Distinguish a squirrel toy and put it on the shipping table. Find another squirrel toy and put it on
the fruit table. Grasp a toy shark and put it on the drink table.

Task 4

Locate the shark toy and position it on the fruit table. Fetch the tea box and place it on the same
fruit table. Discover the ladybug toy and set it on the drink table.

Level 3: Autonomous Decision-Making Level The Autonomous Decision-Making level demands that
robots have the capability to make independent decisions in dynamic environments. Tasks at this level extend
beyond executing predefined operational steps, requiring robots to adjust based on real-time feedback and
environmental changes. For instance, robots may need to reposition target objects, optimize their paths,
or avoid new obstacles. This level emphasizes the robot’s ability to perform situational awareness and task
optimization in uncertain environments, showcasing the robot’s intelligent decision-making capabilities. We
design 10 different tasks of level 3, four of the example instructions from users are as Table 5.

Level 4: High-Level Cognition Level The High-Level Cognition level represents the pinnacle of robotic
technology development, requiring robots to possess advanced cognitive and decision-making abilities similar
to humans. This level involves natural language understanding, multi-modal information integration, and
high-level reasoning. Tasks typically require robots to comprehend complex natural language instructions
and execute multi-step tasks in complex environments while handling unexpected situations and correcting
errors. For example, a robot might need to complete a series of object grasping and placing tasks based



Table 5: Example Instructions For Task Level 3.

Instruction

Pick up a yellow fruit to shipping table.
Put the blue can drink to shipping table.

Help me get the biggest toy and place it on shipping table.
Sorting the apple, coke from purchase table and send it to the reasonable place.

on natural language high-level unclear reference commands and adapt its strategy during task execution,
such as ”Completed the receiving of all the objects” or ”I need a pick-me-up drink, complete its shipment”.
This level evaluates the robot’s advanced cognitive abilities and comprehensive intelligence. We design 10
different tasks of level 4, four of the example instructions from users are as Table 6.

Table 6: Example Instructions For Task Level 4.

Instruction

I am hungry, ship me something to eat.
Give me a fruit rich in vitamin c, complete its shipment.

Completed the receiving of apples.
Completed the receiving of all the drink.

4.4 Evaluation analysis

4.4.1 Computing cost

Table 7 presents the model parameters and FLOPs (Floating Point Operations) associated with different
components of DaDu-E. The pipeline consists of the Llama3.1-8B(Dubey et al., 2024) as planner LLM,
ROS move-base package(ROS Community, 2024) as Navigation module, AnyGrasp(Fang et al., 2023),
LangSAM(Medeiros, 2024) and UR RTDE(SDU Robotics, 2024) as Grasp module, and llava-onevision-
qwen2-7b-ov(Li et al., 2024a) as Vision-Language Model (VLM). The place module is a rule-based method
based on RTDE. As a result, its computing cost is much less. The number of input tokens varies across
different scenarios, depending on the length of input words at the classes of prompting, first feedback(fb1),
and second feedback(fb2) stages. This variation arises from our prompt configuration, as detailed in Sec. 6.

Table 7: DaDu-E’s Model Parameters and FLOPs.

LLM Navi VLM Grasp Place

prompt fb1 fb2 fb1 fb2

token num 543 22 3 / 59+196 15+196 / /
parm num 8000M 8000M 8000M 18.03M 7000M 7000M 564M 21
FLOPs 26064G 1056G 144G 0.002G 10710G 8862G 837.6G 27

The computational cost of this configuration is detailed in Table 8. DaDu-E demonstrates remarkable
computational efficiency compared to state-of-the-art models such as RT-2(Brohan et al., 2023), PaLM-
E(Driess et al., 2023), and RoboFlamingo(Li et al., 2023). We estimate the total computing cost of DaDu-E
as 4.

cost = cplan + cnavi + cvlm + cgrasp + cplace (4)

With the peak of only 8 billion parameters, DaDu-E significantly reduces the model size while maintaining
robust task performance. In contrast, RT-2(Brohan et al., 2023) (based on PaLM-E and PaLM-X) utilizes
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12 billion and 55 billion parameters, respectively, and PaLM-E reaches an immense 562 billion parameters,
leading to substantially higher computational demands. Even RoboFlamingo, which operates in configura-
tions ranging from 3 billion to 9 billion parameters, cannot consistently match the computational efficiency
of our approach.
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Fig. 4: Overview of peak cost with end-to-end methods.

Fig 3 shows the change of computing cost during a single task example, ”Take a banana to shipping table.”
comparing with end-to-end methods and CaP*. The maximum computational requirement of DaDu-E during
LLaMA inference is 26064 GFLOPs, which has been the lowest among all compared models in Tab 8. The
computational cost during LLM feedback is less than LLM inference due to the number of input tokens at the
feedback stage. Meanwhile, RT-2 requires 50976 GFLOPs to 49160 GFLOPs depending on its configuration,
with PaLM-E imposing an extraordinary computational burden of 172646.4 GFLOPs. The RoboFlamingo(Li
et al., 2023) method depending on its parameter size, incurs 281000 GFLOPs, exceeding our pipeline in larger
configurations. This illustrates that DaDu-E not only reduces model size but also minimizes computation,



enabling resource-efficient performance. Additionally, DaDu-E uses an average input token size of 543 for
a prompt and 196 for a picture, avoiding using too many examples in the input prompt with 1024+196 as
CaP*. This further reduces computational overhead while ensuring the effectiveness of task comprehension
and execution.

Fig 4 presents a comparison of the peak computational costs required for completing a single task of “Take a
banana to the shipping table” between our method and several baselines. Notably, the maximum FLOPs re-
quired by our pipeline during LLaMA inference is 26064 GFLOPs, counting the lowest among all compared
methods. In contrast, RT-2 incurs a computational cost ranging from 49160 GFLOPs to 50976 GFLOPs,
depending on its dataset configuration, while PaLM-E imposes a significantly higher burden of 172646.4
GFLOPs. The RoboFlamingo(Li et al., 2023) approach requires up to 281000 GFLOPs, underscoring the
efficiency of our pipeline in achieving competitive performance with significantly lower computational de-
mands. Meanwhile, our peak cost is much less than CaP* with GPT-3.5 and a larger token number in Table
8.

Table 8: Model params and costs.

model params avg input token number peak FLOPs

RoboFlamingo 9B 32+196 38232G
RT-2 (on PaLM-E) 12B 32+196 50976G
RT-2 (on PaLI-X) 55B 32+196 149160G
PaLM-E 562B 32 172646.4G
CaP* 175B 1024+196 1281000G
DaDu-E 8.60B(total) 543+196 26064G

4.4.2 System performance

In this section, we statistics the success rate(SR) of different levels of planning execution. Table 9 shows the
performance of CaP*, COME-Robot*, and DaDu-E across 20 tasks at each level. Based on the performance
results across different task levels, we evaluate our approach against two baseline methods: COME-Robot*
and CaP*, across four task complexity levels. The “Ideal” column represents the theoretically optimal
performance, while the “Execute” column reflects actual observed performance.

At Levels 1 and 2, our method achieves success rates(SR) of 0.90 and 0.70, respectively. These results match
the performance of COME-Robot* and surpass CaP* by 2.1 ×. In Level 3 tasks, our method demonstrates
a success rate 2.6 × higher than CaP* but falls short of COME-Robot* by 1.6 ×. At Level 4, our method
matches COME-Robot*’s performance and significantly outperformed CaP*. These findings demonstrate
that our method reliably handles tasks requiring foundational skills, such as object manipulation and sim-
ple navigation, achieving state-of-the-art (SOTA) performance. However, in more complex and dynamic
environments, our method exhibits slight disadvantages compared to COME-Robot* but still far surpasses
CaP*. A key advantage of our approach is its efficiency: our model uses only 0.008 times the parameters of
COME-Robot* while achieving nearly comparable performance. This underscores its capability to deliver
competitive results with minimal computational resources.

Table 9: Performance Across Different Task Levels.

Task Level 1 2 3 4

Ideal Execute Ideal Execute Ideal Execute Ideal Execute

COME-Robot* 1 0.90 1 0.70 1 0.85 1 0.95
CaP* 0.70 0.43 0.50 0 0.40 0.20 0 0
DaDu-E 1 0.90 1 0.70 0.60 0.51 1 0.95



Meanwhile, for testing navigation performance, we present the Success-weighted Path Length (SPL) index as
a key metric to evaluate the navigation performance of our pipeline, following the methodology in (Anderson
et al., 2018). Different from (Anderson et al., 2018), our SPL metric combines factors of path efficiency
and task broken-down performance, offering a robust evaluation of the system’s planning and navigation
performance in task execution. Specifically, SPL is calculated using the navigation distance computed in
ROS, the ideal navigation distance obtained from the Dijkstra algorithm in ROS. This approach enables
an assessment that accounts for both the optimality of the path taken and the likelihood of successful task
completion, reflecting the system’s overall efficiency and reliability in complex task environments.

spl =
1

N

N∑
i=1

Si
ℓi

max(pi, ℓi)
(5)

Where N represents the total number of tasks from LLM planer, Si denotes the success rate for the i-th task,
li represents the shortest path length, pi indicates the actual path length taken by the robot to complete the
task.

Table 10 presents a comparison of the SPL metric between our method and the baseline, COME-Robot*.
Across all task levels, our method matches the SPL performance of COME-Robot*. Notably, this efficiency
is achieved with a model that is 125 × smaller than COME-Robot*, highlighting the effectiveness of our
approach in delivering high navigation efficiency with significantly reduced complexity.

The comparable SPL values between our approach and COME-Robot across all task levels indicate similar
performance in path optimality and task success. This parity in performance suggests that our pipeline
maintains high navigation effectiveness without compromising task success rates, effectively balancing path
efficiency and task completion under various conditions. Thus, our approach proves to be as reliable and
effective as the baseline, COME-Robot*, for navigation tasks requiring both efficiency and high success rates.

Table 10: SPL Comparison with COME-Robot.

Task Level Condition N SPL Diff.

1
COME-Robot* 2 0.9406 0

DaDu-E 2 0.9406 -

2
COME-Robot* 5 0.8764 0

DaDu-E 5 0.8764 -

3
COME-Robot* 6 0.9148 0

DaDu-E 6 0.9148 -

4
COME-Robot* 4 0.8627 0

DaDu-E 4 0.8627 -

In summary, our method performs competitively against COME-Robot*, particularly in high-complexity
tasks. It significantly outperforms CaP* across all levels, making it a viable solution for task execution
scenarios requiring both reliability and adaptability.

As shown in Table 11, in most cases, although our planner has a significantly smaller parameter scale, it
achieves the same task execution performance and as the GPT-4o planner used in COME-Robot*, and much
better than CaP*. Therefore, we believe that our system greatly reduces the computational cost of embodied
intelligence workflows while maintaining the same level of execution performance.



Table 11: Comparison of Pipeline Planners.

System Planner Parameters

COME-Robot* GPT-4o Over 1000B
CaP* GPT-3.5 Over 175B(Brown, 2020)
DaDu-E LLaMA 3.1 8B

4.4.3 Latency

To evaluate the latency of task execution, we analyze the time required for each task by dividing it into dis-
tinct components: planning (tplanner), navigation (tnavi), Vision-Language Model processing (tvlm), grasping
(tgrasp), and placing (tplace). Table 12 provides a detailed breakdown of these latency components at differ-
ent task levels, facilitating a comprehensive comparison between the baseline method, COME-Robot, and
our proposed approach. This evaluation aims to demonstrate the efficiency of our method across critical
stages of task execution.

latency = tplanner + tnavi + tvlm + tgrasp + tplace (6)

Table 12 compares the latency of various modules in our method with the baseline across different task levels.
Our method consistently demonstrates lower total latency than the baseline at all task levels. Furthermore,
as task complexity increases, the latency reduction achieved by our approach becomes more significant,
improving by 2.4 × to 5.2 × compared to COME-Robot*.

A detailed analysis reveals that at task levels 1 and 4, nearly all the latency reduction in our method is
attributable to the VLM component. At task levels 2 and 3, the VLM component contributes 69 % of the
overall latency reduction relative to the baseline.

These findings underscore the effectiveness of our VLM processing and optimized task planning in reducing
system latency. By integrating llava-onevision-7b into the data pipeline, we achieve substantial computational
efficiency while maintaining performance on par with GPT-4o.

Table 12: Latency Comparison of Different Tasks.

Task Level Method Plan Navi VLM Grasp Place Total

1
COME-Robot 15.08 212.04 26.28 230.11 43.91 527.42

DaDu-E 15.90 212.04 20.82 230.17 43.92 522.85

2
COME-Robot 33.97 578.99 78.84 519.57 131.73 1343.10

DaDu-E 26.78 578.99 62.46 519.57 131.73 1319.53

3
COME-Robot 33.97 737.72 78.84 519.57 131.73 1501.39

DaDu-E 26.78 737.72 62.46 519.57 131.73 1478.26

4
COME-Robot 22.96 558.34 52.56 346.38 88.34 1067.58

DaDu-E 22.88 558.34 41.64 346.38 88.34 1057.58



4.5 Ablation study

4.5.1 Feedback

To evaluate the impact of feedback on task execution performance, we conducted an ablation study, com-
paring task success rates with and without the feedback module across four task levels. In the feedback
condition, the robot receives real-time feedback throughout task execution, enabling it to adjust actions
based on dynamic environmental changes and task requirements. In contrast, the no-feedback condition
removes this capability, assessing the robot’s performance in the execution period. This experimental design
allows us to isolate and analyze the contribution of feedback to the overall task success, particularly in
complex tasks requiring environmental adaptability.

Table 13 summarizes the results of an ablation study on the feedback module. Incorporating the feedback
module leads to significant improvements in task success rates compared to the method without it, with
increases of 1.8×, 12.7×, 3.4×, and 2.1× at task levels 1, 2, 3, and 4, respectively.

These findings highlight the critical role of the feedback module in enhancing the robot’s robustness. By
addressing unexpected obstacles and adapting to complex, dynamic environments, the feedback mechanism
significantly boosts task completion rates. The most substantial improvement was observed at task level
2, suggesting that during the planning of longer sequences involving multiple objects, LLMs require timely
feedback to correct potential errors at each step. This demonstrates the importance of feedback in ensuring
reliable and accurate execution.

Meanwhile, we observed that without feedback module, our task success rate is lower than that of COME-
Robot*. This is primarily due to the planning capabilities of the LLM, as the smaller parameter size of
the LLM we adopted results in weaker reasoning and planning performance. However, the feedback module
effectively addresses this issue by providing action feedback during both the planning and execution phases,
thereby compensating for the limitations of the LLM’s planning capabilities. Therefore, we can conclude
that the feedback module enhances the planning capabilities of the small-scale LLM and improves the overall
system execution performance. This enables our system to achieve performance levels comparable to the
GPT-4O-based planner in COME-Robot* while utilizing a smaller LLM as the planner.

Table 13: Task Execution SR Comparison With and Without Feedback.

Task Level Condition Ideal Execute Execute Diff.

1
No Feedback 1 0.5 0.4
Feedback 1 0.9 -

2
No Feedback 0.71 0.06 0.64
Feedback 1 0.7 -

3
No Feedback 0.5 0.15 0.36
Feedback 1 0.51 -

4
No Feedback 0.9 0.45 0.5
Feedback 1 0.95 -

4.5.2 Memory

To investigate the role of memory in enhancing pipeline task-finishing performance, we conducted an ablation
study, comparing Success-weighted Path Length (SPL) and task latency with and without the memory
module across different task levels. In the memory-enabled condition, the robot retains knowledge from
previous navigation attempts, allowing it to leverage past experiences to optimize path planning and adjust
to environmental changes more effectively. The no-memory condition, by contrast, does not provide this



capability, requiring the robot to rely solely on immediate sensory input for navigation. By isolating the
memory component in this study, we aim to understand its impact on path efficiency and task success across
varying complexities.

The results shown in Table 14 indicate that memory contributes positively to SPL, particularly at intermedi-
ate task levels. At Level 1, there is no difference between the memory and no-memory conditions, with both
achieving an SPL of 0.9406, suggesting that memory may be less critical for simpler tasks. However, at Level
2, the memory-enabled condition achieves an SPL of 0.8764 compared to 0.8591 in the no-memory condition,
marking an improvement of 0.0173. This increase demonstrates that memory aids in path optimization for
tasks of moderate complexity. In Levels 3 and 4, the SPL remains consistent between the memory and
no-memory conditions, suggesting that the number of task target dominate performance at these levels.

Table 14: SPL Comparison with and without Memory.

Task Level Condition n SPL Diff.

1
No Memroy 2 0.9406 0
Memroy 2 0.9406 -

2
No Memroy 7 0.8591 -
Memroy 5 0.8764 0.0173

3
No Memroy 6 0.9148 0
Memroy 6 0.9148 -

4
No Memroy 4 0.8627 0
Memroy 4 0.8627 -

Table 14 highlights the impact of the memory module on SPL performance. At task level 2, incorporating
the memory module resulted in a 2.0% improvement in SPL compared to the method without it. However,
no improvements were observed at other task levels. This finding indicates that the memory module plays a
critical role in optimizing paths for tasks requiring longer sequences involving multiple objects, demonstrating
its value in complex planning scenarios.

Table 15 highlights the effect of the memory module on system latency. Incorporating the memory module
reduced latency by 34.5 %, 4 %, and 1.9 % at task levels 2, 3, and 4, respectively, compared to the method
without it. These results demonstrate that the memory module plays a significant role in improving system
efficiency, particularly in tasks involving longer sequences with multiple objects, where its impact on reducing
latency is most pronounced.

Table 15: Performance Comparison of Tasks with and without Memory.

Task Level Method Plan Navi VLM Grasp Place Total

1
No Memory 15.90 212.04 20.82 230.17 43.92 522.85
Memory 15.90 212.04 20.82 230.17 43.92 522.85

2
No Memory 22.78 862.50 76.25 920.68 133.59 2015.80
Memory 26.78 578.99 62.46 519.57 131.73 1319.53

3
No Memory 26.78 737.72 124.92 519.57 131.73 1540.32
Memory 26.78 737.72 62.46 519.57 131.73 1478.26

4
No Memory 22.88 558.34 62.46 346.38 88.34 1078.40
Memory 22.88 558.34 41.64 346.38 88.34 1057.58

In summary, the inclusion of the memory module substantially enhances the robot’s navigation efficiency by
reducing both SPL and latency. By enabling the robot to remember object locations, the memory module



minimizes redundant exploration, reduces navigation and planning times, and optimizes travel distance.
These results validate the importance of memory in robotic systems, particularly in scenarios requiring
repeated interactions with the environment, ultimately leading to faster and more resource-efficient task
completion.

Moreover, the latency without the memory module is higher than that of COME-Robot*. This can also
be attributed to the memory and planning capabilities of the LLM, as the smaller parameter size of the
LLM we adopted results in weaker memory retention and planning performance. Therefore, we can conclude
that the memory module further enhances the planning capabilities of the lightweight LLM and improves the
overall system execution performance and memory ability. The integration of the Memory module during the
planning phase effectively addresses this issue, achieving a level of performance surpassing that of GPT-4o
in COME-Robot* while maintaining overall lower computational resource consumption.

4.6 Real-World Scalability

The design goal of this work is to seamlessly incorporate the system into any environment and perform
any tasks as long as the encapsulation of those tasks is pre-defined. We thus perform a series of scalability
experiments on the robot by changing the environments and altering the task lists. We show the new task
list in Tbl. 16

In the new environment, DaDu-E also shows promising results. We witness a slightly lower average success
rate (10%), mostly due to the performance drop on the localization algorithm in the new environment. The
accuracy of the planning algorithms remains unchanged. We show some of the experiments on our website:
https://rlc-lab.github.io/dadu-e/.

Table 16: Task Instructions for Real-World Testing.

Task Level Instructions

1 Find apple and place on storage rack
1 Pick an apple and put it in basket
2 Put the apple and coke in the basket and return to entrance
2 Finish task list
2 Finish task list for me
3 Classify object on storage rack and place on the corresponding table
3 Give me all the green fruit on the table
3 I’m hungry, give me something to eat
3 Classify the wrong object in fruit table and put it on storage rack
4 Place all misplaced objects on the storage rack

4.7 Failure recording and feedback

Failure recording and feedback play a crucial role in ensuring robust performance in complex robotic tasks.
In our experiments, failures were categorized into two main types: perception errors and environmental
changes. To address these issues, dynamic feedback and memory mechanisms have been implemented at
both the planning and execution stages.

Perception errors included object misclassification and unrecognized targets. In most cases, perception
errors are caused by either the insufficient planning capabilities of small-parameter models or the limited
recognition capabilities of the models. For instance, when attempting to grasp objects without distinct
external features, the LangSAM module may fail to accurately recognize the target or identify the wrong
object due to insufficient recognition precision. To address this issue, we employ feedback between the VLM
and LangSAM modules. Specifically, the planner’s identified target object and the current table’s image

https://rlc-lab.github.io/dadu-e/


are fed into the VLM to generate a detailed textual description of the object, which is then provided to
LangSAM. This approach significantly enhances the accuracy of LangSAM’s recognition. If the VLM fails to
locate the target identified by the planner, the system feeds this information back to the planner, prompting
it to plan navigation to other tables where the target might be located.

Listing 1: Action List error example

1 {
2 {
3 "action_list": [

4 {
5 "desc": "Grasp a Pepsi can",

6 "action_list": [

7 {"skill": "go_to", "params": ["drink_table"]},
8 {"skill": "pick_up", "params": ["Pepsi_can"]}
9 ]

10 },
11 {
12 "desc": "Place the grasped Pepsi can on the fruit table",

13 "action_list": [

14 {"skill": "go_to", "params": ["fruit_table"]},
15 {"skill": "place", "params": ["Pepsi_can"]}
16 ]

17 },
18 {
19 "desc": "Pick up a Sprite can",

20 "action_list": [

21 {"skill": "go_to", "params": ["drink_table"]},
22 {"skill": "pick_up", "params": ["Sprite_can"]}
23 ]

24 },
25 {
26 "desc": "Put the picked -up Sprite can on the fruit table",

27 "action_list": [

28 {"skill": "go_to", "params": ["fruit_table"]},
29 {"skill": "place", "params": ["Sprite_can"]}
30 ]

31 },
32 {
33 "desc": "Find a Pepsi can",

34 "action_list": []

35 },
36 {
37 "desc": "Place the found Pepsi can on the Shipping table",

38 "action_list": [

39 {"skill": "go_to", "params": ["shipping_table"]},
40 {"skill": "place", "params": ["Pepsi_can"]}
41 ]

42 }
43 ],

44 "first_action": {
45 "step_by_step_reasoning": "",

46 "next_action": {
47 "skill": "go_to",

48 "params": ["drink_table"]

49 }
50 }
51 }
52 }



Environmental changes such as obstacles or object displacement introduce further challenges to task com-
pletion. We utilize the memory module to store the positional information of objects, which is dynamically
updated whenever the object locations in the environment change. This enables real-time tracking of the
target object’s location, thereby enhancing the system’s robustness to environmental variations.

For instance, the following JSON list shows the circumstance planning without memory module under
instruction grasp a Pepsi can and place on the fruit table, and then pick a Sprite can and put
on the fruit table, and finally find a Pepsi can and place on the shipping table., which leads to
an error action list:

5 Conclusion

This work introduces DaDu-E, a novel approach that rethinks the integration of LLMs into robotic computing
pipelines, focusing on efficiency, adaptability, and scalability. By constraining the operational scope, incor-
porating closed-loop visual feedback, and augmenting with a memory module, DaDu-E achieves competitive
performance using a significantly smaller LLM. Experimental results across varied task complexity levels
confirm that DaDu-E matches or exceeds the success rates of existing large-scale systems while dramatically
reducing computational overhead. These findings underscore the feasibility of deploying high-performance
robotic systems on local servers, paving the way for resource-efficient embodied intelligence.
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6 APPENDIX

6.1 Prompt

6.1.1 Prompt of Planer

Listing 2: Prompt of LLM

1 #CONTEXT#

2

3 You are highly skilled in robotic task planning, breaking down intricate and long -

term tasks into distinct primitive actions. The robot has a mobile base and one

arm; the room has many tables: a table of fruit, a table of drinks, a table of

toys with corresponding objects on them, and a shipping shelf receiving shelf,

which is shipping and receiving the objects.

4

5 When given a language instruction, you are required to break them into sub -tasks;

for each subtask, you should list a set of skills to meet the goal.

6

https://openai.com/research/gpt-4
https://platform.openai.com/
https://wiki.ros.org/move_base
https://gitlab.com/sdurobotics/ur_rtde/
https://gitlab.com/sdurobotics/ur_rtde/


7 #SKILL#

8

9 go_to(table name) pick_up(object name) place(object name) done

10

11

12 You must strictly obey these rules using the exact output form above. We assume

that the objects are all on the table; thus, you can do pick_up right after the

navigation skill is successful. Before the pick skill, you should analyze the

feedback and analyze accordingly which object is correct/matches. It is

possible that these subtask has same table to go. You can only execute one

skill at a time; remember, the robot can only hold one object at a time.

13

14 #OBECTIVE#

15

16 When given a language instruction, you must break it into subtasks with short but

logical analysis. Then, for each subtask, you should list a set of skills to

meet the goal. At the start of each subtask, you should first go_to the correct

table. You should analyse the feedback and analyse accordingly which object is

correct/matches. Before placement, you should first go to the table as

instruction.

17

18 Then, you need to output the first skill to execute and output one corresponding

skill according to the u s e r s feedback. You can adjust the skill according to

the feedback. Once the instruction is finished, you should finish the task by

skill done.

19

20 #OUTPUT#

21

22 All of your output should be in JSON format.

23

24 At the first time, if it is #instruction, you should output

25

26 1. Describe the environment precisely and accurately, reasoning by instruction and

environment(MAP) to give accurate actions and parameters2. overall action list

3.the first action.

27

28 Otherwise, if it is #feedback according to the u s e r s feedback, you should

output

29

30 1.step -by -step reasoning according to the feedback: you should check if the

planned next action could be executed according to the feedback, give the

reason, and the next action

31

32 2. next action to execute.

33

34 in this stage, you should only output the one skill that is exactly the next.

35

36 Except for the reasoning part, the output should consist of skills. All of your

output should be in JSON format.

37

38 #MAP#

39

40 [fruit table] [shipping shelf] [toy rack] [drink table][receiving shelf]

41

42 #EXAMPLE#

43

44 example 1:

45 user:#instruction: find lemon, apple and put it on a shipping table

46 your answer:



47 {
48 "reasoning": "The environment consists of a fruit table , a shipping shelf , a toy

rack , a drink table , and a receiving shelf. The object [lemon] is most possible

on the [fruit table], The object [apple] is most possible on the [fruit table]

",

49 "action_list": [

50 "1. Go to the fruit table and find the lemon.",

51 "2. Pick up the lemon",

52 "3. Go to the shipping table",

53 "4. Place the lemon on the shipping table."

54 "5. Go to the fruit table and find the apple."

55 "6. Pick up the apple",

56 "7. Go to the shipping table",

57 "8. Place the apple on the shipping table".

58 ],

59 "first_action": "1. go_to[fruit table]"

60 }
61

62 example 2:

63 user: #feedback: navigation success, there are apple, banana, lemon, plum and

strawberry on the table

64 your answer:{
65 "step_by_step_reasoning": "Based on the feedback that we have navigated to the [

fruit table] successfully , and there are apples , bananas , lemons , plums , and

strawberries on the table. The object to pick up is [yellow fruit], according

to the feedback , the yellow fruit is [lemon], I will first pick up [lemon ].

66 "next_action": "pick_up(lemon)"

67 }

68

69 example 3:

70 user: #feedback: navigation success , there are squirrel toy , shark toy , school bus

toy and fire machine toy on the table

71 your answer :{

72 "step_by_step_reasoning": "Based on the feedback that we have navigated to the [

toy rack] successfully, there are squirrel toys, shark toys, school bus toys,

and fire machine toys on the table. The object to pick up is [lemon]. However,

there is no [lemon] on the table. Thus, we need to navigate to the most

possible table for object [lemon], which is [fruit table]",

73 "next_action": "go_to(fruit table)"

74 }

75

76 example 4:

77 user:# feedback: pick up success

78 your answer: {

79 "step_by_step_reasoning": "Based on the feedback, we have picked up the [pepsi can

] successfully. Now we need to place it on the [purchase table]."

80 "next_action": "go_to(purchase table)"

81 }

6.1.2 Prompt of VLM

Listing 3: Prompt for 1st VLM feedback

1 Please tell me which side of the table the coke can is closer to:

2 1. left side,

3 2. right side,

4 3. far side,

5 4. close side.



6 The output should be the corresponding number and the color and shape of the

object in JSON format.

Listing 4: Prompt for 2nd VLM feedback

1 Please tell me the details of apple in the picture with a brief sentence

6.2 Task design of instructions

Listing 5: Experiment instructions for the task level 1

1 grasp a strawberry and put it on the toy table

2 pick a squirrel toy and send it to the shipping table

3 find a delicious feta can and place it on shipping table

4 pick up a strawberry and put it on the shipping table

5 locate a can of Sprite and place it on the fruit table

6 find a ladybug toy and put it on the drink table

7 find lemon and put it on the drink table

8 find Pepsi can and put it on the purchase table

9 find a toy shark and put it on the purchase table

10 find a squirrel toy and put it on the purchase table

Listing 6: Experiment instructions for the task level 2

1 grasp a Pepsi can and place it on the fruit table, then pick up a squirrel toy and

place it on the shipping table, and finally, pick a Sprite can and put it on

the fruit table.

2 find a plum and place it on the shipping table, then move a strawberry to the

table with the toys, and finally, set the squirrel toy on the fruit table.

3 distinguish a squirrel toy and put it on the shipping table, find a squirrel toy

and put it on the fruit table, and grasp a toy shark and put it on the drink

table.

4 locate the shark toy and position it on the fruit table. Then, fetch the tea box

and place it on the same fruit table. Finally, discover the ladybug toy and set

it on the drink table.

5 retrieve the Fanta can and set it down on the shipping table. Next, pick up a

strawberry and position it on the toy table. Lastly, grab the squirrel toy and

place it on the shipping table.

6 divide Fanta, shark toy, and lemon to its table from the purchase table

7 divide Pepsi, strawberry, and squirrel from its table to the shipping table

Listing 7: Experiment instructions for the task level 3

1 pick up a yellow fruit to the shipping table

2 give me the smallest fruit, I am next to the shipping table

3 pick up all the yellow fruit and send it to the shipping table

4 sorting the apple, coke from the purchase table and sending it to a reasonable

place

5 sorting the beer, coke can, feta from purchase table and send it to the reasonable

place

6 sorting the ladybug toy, fenta, apple from purchase table and send it to the

reasonable place

7 sorting the apple, shark toy, coke from purchase table and send it to the

reasonable place

8 grasp a Pepsi can and place on the fruit table, and then pick a Sprite can and

put on the fruit table, and finally find a Pepsi can and place on the shipping

table.



9 find a lemon and place it on the shipping table, then move a strawberry to the

table with the toys, and finally, set the lemon on the fruit table.

10 Then, fetch the tea box and place it on the same fruit table. locate the shark toy

and position it on the fruit table. I need a pick -me -up drink, complete its

shipment

Listing 8: Experiment instructions for the task level 4

1 I am hungry, ship me something to eat

2 give me a fruit rich in vitamin c, complete its shipment

3 today is my son ’s birthday, give me an object as a gift for him and ship it

4 I need a pick -me -up drink, complete its shipment

5 Completed the receiving of apples

6 Completed the receiving of toy shark

7 Completed the receiving of coke

8 Completed the receiving of all the fruit

9 Completed the receiving of all the toy

10 Completed the receiving of all the drink

6.3 Task break down examples

Instruction: Gather a bottle of water, a toy duck and a persimmon to shipping table.

Listing 9: Example action List of task

1

2 {
3 #instruction gather a bottle of water, a toy duck and a persimmon to shipping

table

4

5 "reasoning": "The environment consists of a fruit table , a shipping shelf , a

toy rack , a drink table , and a receiving shelf. The object [bottle of water

] is most possible on the [drink table], The object [toy duck] is most

possible on the [toy rack], The object [persimmon] is most possible on the

[fruit table]",

6

7 "action_list": [

8 "1. Go to the drink table and find the bottle of water.",

9 "2. Pick up the bottle of water",

10 "3. Go to shipping table",

11 "4. Place the bottle of water on shipping table",

12 "5. Go to the toy rack and find the toy duck.",

13 "6. Pick up the toy duck",

14 "7. Go to shipping table",

15 "8. Place the toy duck on shipping table",

16 "9. Go to the fruit table and find the persimmon.",

17 "10. Pick up the persimmon",

18 "11. Go to shipping table",

19 "12. Place the persimmon on shipping table" ],

20 "first_action": "1. go_to[drink table]"

21 }
22

23 #feedback

24 {
25 "step_by_step_reasoning": "Based on the feedback that we have navigated to

the [drink table] successfully , and there are bottle of water , pepsi

can , and cola can on the table. The object to pick up is [bottle of



water ]. which is already on the table , thus , we can pick it up directly

.",

26 "next_action": "pick_up(bottle of water)"

27

28 }
29

30 #feedback

31 {
32 "step_by_step_reasoning": "Based on the feedback that we have picked up

the [bottle of water] successfully. Now we need to place it on the [

shipping table ].",

33 "next_action": "go_to(shipping table)"

34

35 }
36

37 #feedback

38 {
39 "step_by_step_reasoning": "Based on the feedback that we have navigated to

the [shipping table] successfully. The object to place is [bottle of

water], we can place it directly.",

40 "next_action": "place(bottle of water)"

41

42 }
43

44

45 #feedback

46 {
47 "step_by_step_reasoning": "Based on the feedback that we have placed the [

bottle of water] successfully. Now we need to go to the [toy rack] to

pick up the [toy duck].",

48 "next_action": "go_to(toy rack)"

49

50 }
51

52 #feedback

53 {
54 "step_by_step_reasoning": "Based on the feedback that we have navigated to

the [toy rack] successfully , and there are toy duck , toy rabbit on the

table. The object to pick up is [toy duck]. which is already on the

table , thus , we can pick it up directly.",

55 "next_action": "pick_up(toy duck)"

56

57 }
58

59 #feedback

60 {
61 "step_by_step_reasoning": "Based on the feedback that we have picked up

the [toy duck] successfully. Now we need to place it on the [shipping

table ].",

62 "next_action": "go_to(shipping table)"

63

64 }
65

66 #feedback

67 {
68 "step_by_step_reasoning": "Based on the feedback that we have navigated to

the [shipping table] successfully. The object to place is [toy duck],

we can place it directly.",

69 "next_action": "place(toy duck)"



70

71 }
72

73 #feedback

74 {
75 "step_by_step_reasoning": "Based on the feedback that we have navigated to

the [shipping table] successfully. The task is now complete.",

76 "next_action": "done"

77 }
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